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SOME EXAMPLES OF TlE3APPLICATIONS OF TfD3TRANSONIC

AND SUPERSONIC AREA RULES K) THE

PREDICTION Ol?WAVZ DRAG

By Robert L. Nelson and Clement J. Welsh

SUMMARY

The experimental wave drags of bodies and wing-body combinations
over a wide range of Mach numbers are compared with the-computed drags
utilizing a 2k-term Fourier series ap~lication of the supersonic area
rule and with the results of equivalent-lmdy tests.

The results indicate that the equivalent -bcdy technique provides a
gcad meth~ for predicting the wave drag of certain wing-body combina-
tions at and below a Mach number of 1. At Mach numbers greater than 1,
the equivalent -body wave drags can be misleading. The wave drags ccm-
puted using the supersonic area rule are shown to be in best ageement
with the experimental results for configurations employing the thinnest
wings . The wave drags for the bodies of revolution presented in this
report are predicted to a greater degree of accuracy by using the frontal
projections of oblique areas than by using normal areas. A rapid method
of computing wing area distributions and area-distribution slopes is given
in an appendix.

INTROD~TION

The area rule, first advanced by Whitcomb in reference 1, has con-
siderably altered the methods for predicting wave drag of wing-body com-
binations. Studies leading to the discovery of the area rule showed that
Interference drag between wing and body components could be very large.
Therefore, estimation of drag by ccmponent buildup without somehow evalu-
ating the interference drag could give misleading answers. However, in
consequence of the transonic area rule, a valuable tool was m.de avail-
able to the designers in assessing the transonic drag. This was the
equivalent-body concept, which states that at transonic speeds the pres-
sme drag of the airplane is the same as that for a bcdy of revolution
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having the same longitudinal distribution of cross-sectional area. As a
result, the drag of the configuration is obtained by either estimating
or experimentally determining the equivalent-body drag. Experimental
checks for airplane configurations presented in reference 2 generally .
support this concept in the transonic speed range.

The supersonic area rule, given by Jones in reference 3, provided a
powerful method for calculating the wave drag at supersonic speeds. In
references 4 and > the mechanics of the drag calculations were discussed
together with a number of comparisons of calculated and experimental
drag~ generally at low supersonic speeds. Jones pointed out in refer-
ence 3 that the method could be expected to give good results for thin
wings mounted on vertically symmetrical bcdies. Later, Lomax in refer-
ence 6 gave the canplete linearized theory expressions for the drag.
The added terms in Lamax’s result represented the limitation pointed out
by Jones.

——

The purpose of the present paper is to yrovide a better feel for
the range of applicability of both the transonic and supersonic area
rules. For the transonic area rule, this is done by making additional
comparisons between equivalent-body and wing-body experiments. For the
supersonic area rule, comparisons are made of calculated and experimental
results for both body and wing-body combinations over a wider range of Mach
numbers than heretofore made. The supersonic-area–rule calculations were
made by using a 24-term Fourier series expression for the slope of the area
distribution.

SYMBOLS

.-
A frontal projection of the area cut by a Mach plane or wing

aspect ratio

CD drag coefficient, -$

CP pressure coefficient

c wing local chord —.

co
root chord of particular pointed wing tip

Cr wing root chord
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f(v)

‘(KJ ‘Q)

H(WO)

K

1

z~

Z/d

M

wing tip chord

drag

maximum body diameter, 2rm

resultant pressure force

z
wing-thickness -distribution function, ~

max

wing-area-distribution function

wing-area-distribution slope function

(~1+pc09e ) (for the left-wing panel; m 1 -
p Cos e for

tan A tan A )
the right-wing ~nel

length of configumtion

total length of area distribution

body fineness ratio

Mach number

n

r

‘m

s

%3

se.
u

%

.

integer

dynamic pressure

local body radius

maximum body radius

reference area

body frontal area

wing exposed area

wing total plan-form area

‘s
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a wing semispan

so semispan of particular

t/c wing thiclmess ratio,

XJYJZ Cartesian coordinates

pointed-tip wing

%max
c

—

‘o point of intersection of Mach plane with the x-axis

~1 x-coordinate measured fran wing leading edge

‘1 dumy variable

z local -mum wing ordinate

p={’

q.:

@ = COS-l(%-’)

.-
“

.

A wing leading-edge sweepback angle

A wing taper ratio, ~
Cr

P
-1 1Mach angle, sin ~

v=<

‘o

‘r

e

of

of

and line of intersection of Mach plane

value of v at root

value of v at root

angle between z-axis
with the y,z plane

REVIEW OF THE BASIC TIIEORY

P

particular pointed-tip wing

actual wl.ng

.
*

From reference 6, the equation for the wave drag of-any system of
bodies or wings and bodies can be written as:

j:,~l@-
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1!3 ‘f(xl Ye) log(x - xl)
‘q dxl

(1)

The equation is subject to the usual limitations of the linearized theory.

Before discussing the terms in the drag equation, it is well to review
the definition of ~ch planes. The physical significance of equation (1)
is understood if the configuration is cut by Mach planes. Mach planes are
easily visualized by considering a Mach cone originating at a point on the
x-axis which is alined with the remote relative wind. A Mach pbne is
simply a plane tangent to the Mach cone and at an angle of roll, 8 about
the x-axis measured frcxnthe y-axis. By moving the vertex of the Mach
cone along the x-axis, a Geries of parallel Mach planes will cut the con-
figuration for a fixed roll angle 6.

In the drag equation the term A(x,e) represents the frontal pro-
jection of the oblique area cut by a particular Mach plane, whereas f(x,e)
represents the net force normal to the stream direction on this section in
the 9 direction. These relationships are illustrated in figure 1 for
angle of roll 8 of the Mach plane of 0° and 9°. By neglecting the

term ~ti(x~e), the equationre’uces to the supersonic-area-rule fO1711fi
‘q ‘x

given by Jones in reference 3. Evaluation of f(x,8) requires the pres-
sure distribution on the configuration which when integrated over the
configuration gives the drag directly. As a result, large values of

&w impose a ltitation on the supersonic area rule, even within

the framework of the linearized theory.

It is not the purpose of the present paper to evaluate the drag of
configurations including the effect of the pressure term but to evaluate
the drag of configurations using the supersonic-srea-rule formula of
Jones. The influence of the pressure term was evaluated for one simple
case.

Equation (1) can be written in coefficient form as

.

s

(2)
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quantity CD(8) is most readily determined by solving the inte-

CD(f3) through a Fourier sine series eqression.for ~ fol-

lowing the method of reference 7 if

then ~(f3) can be written as

CD(8)‘&-n2

For the computations of this paper, only 24 terms were used in the

Fourier sine series expression for !&C ~us,

n=24

CD(@) ‘&
I

%2

n.1

BODY DRAG RESULTS

For bodies of revolution, the calculation of the drag is simplified
to some etient because the area distributions are identical for all roll
angles. However, except for high-fineness-ratio bodies, it is not pos-
sible to assume that the frontal projection of the oblique area cut by
the Mach plane is the same as the normal area. ‘Figure 2 chows an example
of this for two parabolic bodies of revolution having different fineness
ratios and shapes. The area-distribution curve slopes were calculated
from the e~ression

JJdA2’u (x - xo)dx

z=~
xl &?2(x) - (x - ~)*

-w

.

b

.

w

u
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The derivation of this expression is given in appendix A. It has also

been assumed for the calculations (and all succeeding body calculations)
that a cylinder can be added at the base of the body without altering
the drag. If this were not done, the solution would reqtire the flow to
fill the area behind the base which would exceed the limitations of the
linearized theory. Figure 2 shows large changes in the peak slope over
the afterbody of the fineness-ratio-6.ti configuration; these changes
would lead to a significant drag variation with Mach number.

The evaluation of the slope of the oblique area distributions is
extremely difficult except for simple bodies. There naturally arises

the question as to whether this is worth while if the pressure term is
ignored.

As
area of

derived in appendix B, the local force acting on the oblique
a body of revolution is

~ iS that ~ isThe only assumption made in derivation of ~

constant over the oblique area. This is a reasonable asswption except
for bodies having discontinuities, and high local slopes. Then,

–g:=g+$sdA
dx

Thus, the error in the drag intrcxiuc:: by ignoring

dependent on the pressure gyadient &.

.

the pressme term is

It would be expected that the drag for a conical nose
attached shock wave over which the pressure is constant at
attack would be least affected by the pressure term. (The
takes on a value only near the juncture with the cylinder;
pressure term was not evaluated in this region.) Figure 3

with an
zero angle of
pressure term
however, the
presents a

~cmparison of the drag of various cones calculated with the supersonic-
area-rule formula with the exact theory drag of reference 8. The lowest

Mach number of the comparison corresponds to the lowest Mach number for
entirely supersonic flow on the cone as calculated with the exact theory.
The kL@_LeSt Mach number of the comparison was arbitrarily taken as that
at which the slope of the Mach line equaled one-half the slope of the
nose. ‘Theagreanent between the two theories is remarkable, within
5 percent except for a few points.

m
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A better comparison may be made by plotting CD(Z/rm)< against

Brm/z, the quantity which defines the frontal projection of the oblique

area distribution. This has been done in fi@re 4 to give drag in dimen-
sionless or collapsed form. The drags from exact theory (7° half angle
cone was chosen as representative), slender body theory (ref. 9), and
supersonic-area-rule theory are shown. The comparison shows the great
improvement of the area-rule theory over the slender-body theory at
values of ~rm/l greater than 0.2, and the good agreement of the area-

rule result with the exact theory to ~rm/Z of about 0.7. At higher

values of ~rm/l the area-rule theory is in error, possibly first because

the pressure term is neglected but finally, near ~rm/Z = 1, because the

assumptions of the linearized theory are violated. At j3rm/Z= 1, the

Mach line lies on the cone surface, which corresponds to the realm of
hypersonic flows. (See ref. 10.)

For a body with cwvature, for exemple, a nose of parabolic profile,
the pressure over the nose is variable, and the hfluen~e of the presBme
term may be significant. Figure 5 presents the drag for noses of parabolic
profile in collapsed form. Here the supersonic-area-rule theory is an
improvement over slender-body theory but in only partial agreement with
the more exact second-order theory of reference 11. Inclusion of the
pressure term, evaluated by using second-order presswe-distributions,
however, does give agreement with some of the .second-order-theory resulte.
Since the second-order-theory drags do not collapse into one curve, agree-
ment should be.expected only with those points for which the preswre dis-
tribution used in evaluating the pressure term apply. However, this was
not the ca~e. For example, the pressure distribution used for the pres-
suxe term calculation at ~rm/Z . 0.3 corresponds to the flagged symbol.

For the parabolic noses, both the area-rule theory and the area-rule
theory plus the pressure correction cannot be expected to apply near and
above prm/Z = 0.5, where the slope of the Mach line equals the slope of

the nose tip.

Figure 6 presents a ccnnparison of the pressure drag from supersonic-
area-rule theory tith experiment and slender-body theory for a family of
parabolic bOdie8 of revolution. The experimental drags were taken frcm
references 12 and 13. In determimlng the experimental pressure drags,
the friction drag was assumed turbulent and e~aluated by using the sub-
sonic drag level and the results of reference 14 for the effects of Mach
number and Reynolds number; the fin pressure drags were assumed identical
and taken frcm reference 15; and the base drags were still and were sub-
tracted when available. The slender-body-theory drags were calculated
using the curves of reference 9.
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As would be expected, the comparisons show the increasing ability of
both the srea-rule theory and slender-body theory to predict the drag as

4 the body fineness ratio is increased. In most cases, the area-rule theory
offers a significant improvement over slender-body theory. The area-tie
theory and slender-body theory are in agreement near M = 1, since at this
Mach number the supersonic-area-rule theory reduces to slender-body theory.

From these nose and complete-body comparisons that have been made,
the following conclusion can be drawn. The area-rule drag of bodies can
be predicted to a greater degree of accuracy by using the frontal projec-
tion of oblique areas at a given Mach number than by using normal areas,
if, at the Mach number under consideration, the limitations of the line-
arized theory are not ekceeded. This is illustrated by the comparison
between the drag at a given Mach number and the drag near M = 1 especially
for the low-fineness-ratio bodies. It is not to be inferred from the above
statement that the supersonic-area-rule method is recommended for evalu-
ating the drags of bodies of revolution. However, when the drags of wing-
body combinations for which the body area distribution is needed are deter-

. mined, the oblique area distribution should be used if the body is of low
fineness ratio or has low-fineness-ratio components.

CAUUIATION OF WINGBODY DRAG

.
The difficulty in computing the wave drag of wing-body configurations

can be considerably reduced if the configuration meets the following con-
ditions: first, the body is of sufficiently high fineness ratio so that
the change in body-area distribution with Mach number is small, and sec-
ond, the wing is thin. These conditions imply also that the pressure
term is negligible. Some feel for the body fineness ratios necessary for
the above condition to be met can be obtained from the preceding section
on bodies of revolution. The assmnption of a thin wing allows the hkch
plane intersecting the wing obliquely to be replaced by a plane perpen-
dicti to the wing chord plane intersecting the wing plane along the
same line as the Mach plane. Note that, at zero roll angle, the l&ch
plane is normal to the wing chord plane but is not normal to the wing
chord plane at any other roll angle for a Mach nuuiber other than M = 1.
Also the angle between the Mach plane and the normal to the wing chord

plane is ~eatest and eqyal to tan-l~ at a roll angle of ~“.

Appendix C presents a simple analytical method for evaluating wing
area distributions and area-distribution-curve slopes. The curves neces-
ssry for evaluating these ~antities (figs. 16 and 17) are applicable only
to 65A series airfoils, but similar curves

.
foil sections..

can be made up for other air-
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In order to get an idea of the applicability of the thin-wing assump-
.

tion, a calculation has been made of the true area-distribution-cme-
slope variation for 600 delta wing having an NACA 65AOO~ airfoil section >
for a roll angle of $D” and a Mach number of 1.414. In order to simplify
the calculation, the wing was approxhated by a sufficient number of
linear-slope elements to define the airfoil section adequately. With
this approximation the Mach plane intersection with the wing surface was
made up of straight lines. The expression for the frontal projection of
the oblique area was then easily evaluated and differentiated to obtain
the slope. The results of the calculation are presented in figure 7.
Although the slopes for the upper and lower half wings are significantly
different, the total slope agrees almost exactly with the slope obtained
by using the thin-wing assumption. On the basis of this result, it is
felt that the thin-wing solution should be adequate for wings of present-
day interest.

For the wing-body combinations of this paper, an additional simpli-
fication was allowed in the supersonic-area-rule wave-drag calculations.
Since the tail fins mounted on the models were thin and relatively small. .

(see ref. 16), their drags were subtracted as tares. Then, since the
bodies for all cases were of high fineness ratio (and identical), the
body-area-distribution-curve slopes were considered independent of Mach .

number, and the changes in the area-distribution-slope curves with Mach .

number and roll angle were due entirely to the wings. As derived in
appendix C, the area distribution for a given wing (m fixed) is depen-

dent only on the value of
p Cos e

Thus, the area-distribution-slope
tan A “

curves for the wing-body cotiiguration are dependent only on the value

of p Cos e
Then, from equation (2) and because of the syaunetry of the

tan A “
configuration,

f

r/2
CD(M) =$

o

In order to obtain the wave drag of the

CD(6)d6

configuration, a plot of CD

against O is required. This can be computed if a plot of CD against
p Cos e ~

s given, since the angle e is known for fixed values of P
tan A
ati p Cos e

tan A
. The configuration drag is simply the average drag between

tan A
e =0 and%.

For the wing-body calculations of this paper the bdies were identi-
cal. The body-area-distribution-slope curves are shown in figure 2(b).
The curve for M = 1.414 was chosen as representative for the Mach number
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range of interest. The wing area distributions and area-distribution-
curve slopes were obtained by using methds similar to that given in

p Cos eappendti C. In addition, a ltiiting value of
tan A

= 0.8 was set for

configurations having blunt leading-edge airfoils.
(‘hove w = 1’

the Mach line lies behind the wing leading edge, and the linear theory is

\no longer valid for blunt airfoils.
I

An example of the wave drag calculation for the most extreme configu-
ration investigated (600 delta wing, NACA 6>AO06 airfoil) is presented in

figures 8, 9, and 10. Figure 8 shows nondimensional plots of ~ against

$ for various values of -. Figure 9 shows the effect on CD of

the number of terms in the series solution. Except at
p Cos e

= O and 0.8,
tan A

convergence was apparently obtained within 24 terms. Figure 10 shows the

variation of the area distribution drag with w, the ~~iation of

area distribution drag with roll

uration drag with
+X”

WING-BODY

angle, and the variation of the config-

DRAG COMPARISONS

Figure El presents some wave-drag comparisons for wing-body combina-
tions. The experimental wing-body results were taken from references 16
to 19. The wing-body wave drags were obtained in the following manner.
The friction drags were assumed to be turbulent and were estimated by
using the results of reference 14. Base drags and fin pressure drags were
subtracted using the results of reference 16. The equivalent-body drags
for a Mach number of 1 were obtained expertiental.ly by using the heliwn-
gun technique described in reference 2. These m~els had fow scaled
tail fins. The friction drag was assumed to be the subsonic drag level
corrected at higher speeds for Reynolds number and Mach nwber by using
the results of reference 14. Base-dxag rise and fin-drag rise were not
evaluated for the equivalent-body models. These quantities, however,
should be small in the Mach number range where comparison is valid. The
supersonic-area-rule-theory drags were evaluated by using the method of
the preceding section. No attempt was made to evaluate the drag with
the pressure term included. The drag coefficients presented in figure U
are based on total wing area.

●
The inability of the supersonic-area-rule theory to predict the drag

near M = 1 is evident for nearly all cases. However, the a~eement at
the higher Mach numbers between the theoretical drags and the experimental
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.
wing-body drags is excellent and within the accuracy of evaluating the
experimental wave drag, except for three configurations. Two of these .,
configurations (figs. 11(c) and n(g)) had 6-percent-thick wings which

-
-!.

were the thickest wings investigated. The third configuration (fig. U(h))
.

had a ~- percent-thick airfoil but with fairly steep wedge components.

For the~e configurations, a significant effe-ct of the neglected pressure
term may be possible. As a result, the drags calculated for configura-
tions having wings of these thicknesses and sections should be viewed
with caution.

The comparisons in figure 11 show that the equivalent-body drags
give a good approximation to the experimental wing-body drags up to a
Mach number of 1, except for the two configurations having 6-Percent-
thick wings (figs. 11(c) and n(g)). This result is in agreement with
reference 2 which shows the validity of the transonic+rrea rule decreaseB
with increasing wing-thickness ratio. At Mach numbers above 1, the agree-
ment is variable but tends to be consistent with the flatness of the cor-
responding theoretical curve. That is, as the theoretical drag variation
with Mach,mxnber becomes smaller, the equivalent body gives a better

-

approximation of the supersonic-bag level. .This would be expected, since
a flat theoretical curve indicates that the variation in area-distribution ‘
drag with roll angle or Mach number is small. Then the drag for the Mach
number 1 or roll angle ~“ area distribution (corresponding to the equiv-
alent body) is representative of the configuration drag.

Figure 12 shows the comparison between experimental-configuration
drag and equivalent-body drag for an airplane configuration. The com-
parison shows an extreme example, compared with the relatively good results
of reference 2, of the inability of the equivalent body to predict the
supersonic-drag level. The equivalent-body drag is approximately 40 per-
cent low in spite of the low aspect ratio of -the configuration. Apparently,
the configuration tail surfaces cause the area distribution to change mark-
edly at low supersonic speeds. Below M = 1, the equivalent body gives a
fair representation of the configuration drag. The bag of the configu-
ration minus the tail surfaces could probably be calculated to the degree
of accuracy shown in figure U. The influence of the tail surfaces, how-
ever, may be difficult to evaluate. If the horizontal tail su-pports a
load when the configuration is at zero lift, the itiluence of the pres-
sure term may be significant. Although no supersonic-area-rule drag cal-
culations were made for this airplane, reference 20 indicates that-gen-

erally good predictions of complete-airplane bag can be made.l

_%ubsequent to the preparation of this paper, NACA RMA56107 has
been prepared at the Ames Laboratory and presents mpersonic-area-mle

.
a

calculations for a configuration similar to the one shown in figure M
but with small differences in area distribution in addition to the ‘
absence of a canopy. u



NACA RM L’36Dll 13

.
.

w

EVALUATION o~ como.mm AND uw~ CE DRAGS

AS was shown in the preceding section, the supersonic area rule can
be a useful tool in evaluating the supersonic drag of a wing-body con-
figuration. In order to assess the efficiency of the combination as a
whole, however, the effects of the combination on the component drags
and the interference drag between the components must be known. The
supersonic area rule provides a valuable n&hod for evaluating these
effects.

The supersonic-area-rule equation can, of cource, be used in evalu-
ating the drags of individual wing and body components. This was done
for a number of bodies in a previous section of this paper. The same can
be done for isolated wings. An example of this is shown in figure 13
where the drag of delta wings having 65A series sections is plotted in
collapsed form. The area-rule result is compared with a result obtained
by the method of Beane (ref. 21). The two methods are just two forms of
the sane linearized wing theory. The a~eement between the two methods
iS good.

An example of the effect of the wing-body configuration on wing drag
is presented in figure 14. The calculation is for the configuration having
the closest agreement between the theoretical and experimental drags
(fig. n(b)). In this figure, the drag of the exposed-wing panels based
on total and exposed wing areas is compared with the isolated wing drag.
Separation of the wing panels gives approximately a 10-percent reduction
in wing drag coefficient at Mach numbers above 1.3. AS the Mach number
approaches 1, this favorable effect disappears. This would be expected,
for at M = 1 the area distributions of the exposed wing panels and the
isolated wing would be identical if the body were cylindrical.

Figure 15 shows an evaluation of the interference drag for the same
configuration. The sum of the calculated body and wing drags is compared
with the calculated configuration drag. The curves show a favorable inter-
ference effect at Mach numbers below M = 1.3. At Mach numbers above 1.3,
interference drag is, for all practical purposes, zero. Thus for this
configuration, at Mach numbers
of combining the wing with the
panels.

An investigation has been

greater than 1.3, the only beneficial effect
body comes from the separation of the wing

CONCLUSIONS

made of abilities of the equivalent-lmdv
technique and a 24-term Fourier series application of the-supersonic- “
area-rule method to predict wave drag at transonic and supersonic speeas.
From the theoretical @ experimental comparisons made, the following
conclusions can be drawn:

w’wmB-
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1. The area-rule drag of the bdies of
report are predicted to a ~eater degree of
projection of oblique areas at a given Mach
areas.

NACA RM L~Dll

“K

revolution presented in this
accuracy by using the frontal

L
number than by using normal

2. The supersonic wave drag of slender-ting-body configurations can
be predicted with the supersonic-area-rule formula. For the wing-body
configurations investigated, the best agreement was obtained for the con=
figurations employing the thinnest wings. .—

3. The equivalent body technique provides a good method for predicting
the wave drag of certain wing-body combinations at and below Mach number 1.
At Mach numbers above 1, the equivalent body wave drags Can be misleading.

Langley Aeronautical Laboratory,
National Advisory Comnittee for Aeronautics,

Langley Field, Vs., April 6, 1956.

.
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APPENDIX A

AREA DISTRIBUTION SLOPE FCR BODIES OF

CUT BY OBLIQUE MACH PIANES

The area distributions are identical for all

15

REVOLUTION

roll angles. For

simplicity a roll angle of 900 will be used in the derivation.

b~’

‘u 7

x=~+pz z

r = R(x)

rd -~ @

%
dz

— x Y

L

2
xl

(a)

The frontal project ion of the oblique area cut by the Mach plane (see
sketch (a)) is given by the equation:

From the eqwtion for the Mach plsme, z is related to x by

z .x-%
P

and

l&dz=-
P

The equation relating y and x is given by

. .-
;

p%2(x) - (x - ‘O)* m-)
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Then,

A=+~J~ti

Differentiating the expression for . gives..

NACA RM L56D11

-.

..

(A2)

(A3)

where ‘2 and Xu are the roots of x=q - ~R(x) and x = ~ + 13R(x),

respectively.

.

.

.

t
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TEE NET FORCE ACTING ON ‘lYDZ

REVOLUTION AT ZERO

For a body of revolution at zero

OBLIQUE AREA OF A BODY OF

ANGLE OF ATTACK

angle of attack, the net force is
independent of-roll angle. me derivation will be made for a roll. angle

The net force in the e direction (the

%)0) (see sketch (b)) canbe written as

+bol-+

z-direction for a roll angle of

The
dix

The pressure
equation for
A as follows:

.
.

~d~ + dz’

f

J
-= ~dy
qc

coefficient at zero lift is a function of x only.
y in terms of x is given by equation (1) of appen-

%2(X) - (x - XO)2

~@*.-
.-—
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and

w=

Then, the net force can be

~k-~

NACA RM L%DU

--

p%(x)% - (x - x.”) ~ -k

@{~2R2(x) - (X - X“)2

written as

f2 Jx“ Cp[~2R(x)$& (X-X”~

J

[X. Cp D2R(x)~ - (x - X“q
—=. -

B
dx+~ &

q Xu
~2R2(x) - (X - X“)2

X2 &2R2(x) - (x -x”)*
.

Integrating the

2n

f2

J

[Xu Cp P2R(x)&- 1
(x - x“)

—.-
$

dx
q X2

&2R2(x) - (X -~)2

expression by part5 gives

J22=-f ‘“g - (x - X“)2-3Xq X2

If ~ iS essentially constant between the ltits of integrations>
UJi

f2—=--
q P

Then, from equation
in appendix A (eq. (’AZ?))

for the frontal projection of the oblique area

.

.

a
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APPENDIX C

.

METHOD FOR D~ G WING-AREA DISTRIBUTION AND

41J?A-DISTRIBUTION-CURVE SLOPE

This method assumes that the wing is thin and that the oblique Mach
plane can be replaced by a plane perpendicular to the wing chord plane.
‘Themethod also assumes the wing has straight leading and trailing edges
and constant thickness ratio.

The methd is developed first for pointed-tip wings. Then, correc-
tions are made for curved-wing-body junctures aqd finite ti.ngtips. In
addition, the right- and left-hand wing panels are considered separately.

Pointed-tip wings .- Consider the right-wing panel shown in the fol-
lowing sketch:

X4+, I ‘ \

(/J
Lx, =Xo+y(p

‘max

z

Cos e - tan A)



The frontal projection of the area of one
plane is given by

A
J

=2 Zdy

and ~ can be written as

NACA RM L56Dll

wing panel cut by the Mach

z %&LX z 1 ~f(v)—=— —= —
c c %aX 2C

Then, for $ constant,

The value of q and v are related by the intersection line of the Mach
plane and the &ng chord plane
equation

“=%+

and for the left-wing panel by

“=%+

Then,

C(-J
v

[
=~vo+

for the right-wing panel given by the

Y(P cos Q - tan A)

the equation

Y(P cog e + tanfl)

With

and

Vn-V

--

. .

.

.
L

.

Let

“ (tan A*~cos@&

so
m =— tan A

co
--, ,

A.&@&&$l%%%aZ?
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In terms of tapered wing

x.~
gecmetry, m is given by

Then,

V.-v

Let

‘=m(’+=+
for the left-wing panel and

‘“ml-$=)
for the right-wing panel. Then,

Vo-v
V= K-V

dq K- Vo
—s-
dv (’ - V)2

c
—= 1
co

-q=;+.

&p-tidv% (K - V)3

The equation for the area can then be written

J
v

A=
(

‘K-v
upper f(v)

-Soco ; 0)2
‘Imer (’- V)3

gj@@J=.~

as

dv = SOCO ~~ G (K,VO)

21
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The slope of the area-distribution curve is obtained by differentiating
the expression for A

1-

(K - VJ2

(K )
3

- ‘lower

z= .O+K - .o)~~; ,;:;)3 d,+

(K
)

- VO)2dvloVer f plower - K - ~

dvo
( )

3
upper

1

d.,

( 1‘pPer f Vupper)
dvo

or

dA—=
dvo

6~co ~H(K>v~)

Curves of G(K,vo) and H(K,vo) have been-de uP for
airfoil and are given in figores 16 and 17 for values of K

J f(v) ~v
to 2.4 and V. from O to 1. In evaluating

(K-,)3 ‘

assumed to vary linearly between airfoil ordinate stations.
gives a plot of f(v)

For K and V.

by the expressions

For K and V.

the expressions

for this assumption.

greater than 1, @K,vo) and @K,vo)

(K - V())2
G(K, Vo) = G(K,l)

(K - 1)2

(H(K,vO) =H(K,l) ~:- ; )

-.

a 65A series .

from O

f(v) was
.

Figure 18
.—

are given

less than 0, G(K,VO) and H(K,vo) are given by

G(K,vo) = G(K,O) =

.
.

H(K,vO) = H(k,O) u
K .
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Correction for curved-wing-body juncture. - The following sketch

shows a pointed-tip wing mQunted on a cuxwed body.

\
\

\

%
\

r&l- /

Line of
plane‘t=. Y.. , intersection of Mach

and wing chord plane

(d)

The areas and slopes will be referred to

(cr~ s, and x). The areas and slopes,

pointed-wing tip.

In sketch (d) consider one point of
with the body. The area of the wing cut

the actual wing geometry
however, will be for the exposed

intersection of the wing panel
by the Mach plane through this

point is determined only by the product of- SOCO of ~he exposed wing

through the point and the value of VO for the exposed wing at the point

of intersection. As the point of intersection changes, SO, Co, and vo

change
actual

and account for the intersection line. Expressed in terms of the

wing-body characteristics, Soco is given by

Crs
[(

1

2

soco=~l - 1-
A)g

The quantity ~ is related to V. by the expression

vr-(l-l)m~

‘o =
1-(1 -A)8

The area of the exposed wing panel cut by the Mach plane can be written
as

wrw~~
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. .

The area is calculated for given value of VO. T’hecenter-line value of

v is given by

‘r
[ 1=v~l-(l- l)~+K(l -1)$

The slope is obtained by differentiating the expression for A and

d%
If —=0,

dvo

t
dA—= [(LLEl-l-
dvr 1-A

A)#H(K,vO)

Correction for finite wing tip .- In order to correct the pointed-
tip wing panel and slopes for the finite wing tip, the areas and slopes
outboard of the wing tip are subtracted.

(e)

From sketch (e):

plane and wing

.

.
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Then the areas and slopes are given by

The center-line value of v is given by

.

25
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(a) Q = 900.

Figure 1.- The areas and pressures which influence the drag of configura-

tions at supersonic speeds.
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Figure 2.- The effect of Mach number on the mea-distribution-curve
of bodies of revolution.
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Figure 4.- The drag of cones in collapsed form.
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o .2 “ .4 .6.
#r./2.

Figure 5.- The drag of psrabolic noses in collapsed form.
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Figure 6.- Concluded.

33

.
.



c---------

/’”

,’>’

iq-

.5 -
//-~-\

(?

-.5 –

-10 –

-[5 -

-.20 -

-25 –

-30
I I 1

0 .,? .4 .6

&/c.

Figure 7.- Comparison of the area-distribution-curve S1OFS for

wing obtained by using the thin- and thick-wing assumptions.

65ACJ% airfoil section; M= 1.414.;e . X“.

,’ I

\

:’

J’

.8 /.0

a delta

NACA

!’.’



NACA RM LXDU

.-

.

.

Z?cos e
Z’an A

35

(’l
0> A’---hI

Ess2iL ,,,

“VI

/

Figure 8.- Example of ’the area-distribution-curve slope for a wing-body
configuration for various values of p cos Q/tan A. 600 delta wing;
NACA 65Ao06 airfoil section.
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(c) Configuration drag.

lo. - An example of the calculation of the
drag of the area distributions at various
delta wdng; NACA 65AO06 airfoil section.
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(c) Model 5 (ref. 16); 63° delta wing; NACA 65AO06 airfoil section;

Sb
—= 0.0305.
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(d) Model 6 (ref. 19); 60° delta wing. Thicbess ratio varies from 0.03
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Figure 11.- Comparison of the calculated &ag with experiment and
equivalent-body test results for wing-body combinations.
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(e) Model of reference 17; A = 2.31; &/2 = O; NACA 65ACX)3 airfoil section;

Sb
- 0.0606.
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(f) Model C-3 (ref. 18); A = 3; A = O.2; &/4 = 45°; NACA 65AO03 air-
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foil section; —= 0.0606.
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(g) Model 6 (ref. 16); A= 4; x = 0.6; &/4 = 45°; NACA 65Am6 airfoil

Sb
section; —= o.otb6.
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Figure Il. - Continued.
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Figure 11.- Concluded.
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Figure 14. - Effect of wing-panel separation on wing drag. 60° delta
wing; NACA 65AO03 airfoil section. .
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Figure 15. - Compsrison of the sum 03 component drags with the configura-
tion drsg. 60° delta wing; NACA 65AO03 airfoil section.
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